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Abstract
The kinetic energy density tG(r), where G denotes the gradient form (∇ψ)2,
is known to be a functional of the ground-state density ρ(r), but the functional
remains unknown. For an arbitrary number of closed shells in a bare Coulomb
field, an exact first-order differential equation is derived giving tG(r) solely
in terms of s-state information. Numerical illustrations are given of the main
analytical results.

PACS numbers: 21.10.Sf, 31.15.Ew

Some time ago, one of us [1] obtained a spatial generalization of Kato’s theorem

∂ρ(r)

∂r

∣∣∣∣
r=0

= −2Z

a0
ρ(r)|r=0 (1)

for closed shells in a bare Coulomb field as

∂ρ(r)

∂r
= −2Z

a0
ρs(r) (2)

where the Coulomb potential is V (r) = −Ze2/r and ρs(r) is solely the l = 0 angular
momentum component of the total electron density ρ(r).

Of course, density functional theory then leads us to the conclusion that the positive
definite kinetic energy density, tG(r) (where G—gradient—denotes that t is defined from
the (∇ψ)2 wavefunction form), is thereby determined by ρs(r), since tG is known to be a
functional of ρ(r). These, however, are formal statements, and our purpose in this letter is to
make them quite explicit.

As a first step, we take the relation derived by Howard and March [2] in their work on
the nuclear cusp condition in the bare Coulomb model analogous to equation (2). In their
equation (12) they write the s-state density ρs(r) in terms of the quantity t ′G(r)+(2Z/a0)tGs(r),
the construction of which was motivated by equation (2) alone [Note: it has been brought
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to our attention that in equation (13) of [2], the second term should be preceded by a minus
sign.]. Their equation (12) reads

ρs(r) = a0r
2

Z

(
t ′G(r) +

2Z

a0
tGs(r)

)
+ exp

(
−2Zr

a0

)

×
[
ρ(0)− 2

∫ r

0
r2

(
t ′G(r) +

2Z

a0
tGs(r)

)
exp

(
2Zr

a0

)
dr

]
. (3)

We shall demonstrate below that in this same model

t ′G(r) +
2Z

a0
tGs(r) = − 1

r2

(
Zρ

a0
+
ρ ′

2

)
. (4)

Assuming this result, and inserting it into equation (3), we find almost immediately that

ρ(r) exp

(
2Zr

a0

)
= ρ(0)− 2

∫ r

0
r2

(−V ′ρ
a0

− ρ ′

2r2

)
exp

(
2Zr

a0

)
dr (5)

where V ′ = Z/r2. Differentiating equation (5) with respect to r, it is then a simple matter to
confirm that it constitutes an identity, which is the initial demonstration of the correctness of
equation (4).

As an immediate example of the utility of this latter equation, let us insert the spatial
generalization of Kato’s theorem embodied in equation (2) into the right-hand side of
equation (4) to find, for an arbitrary number of closed shells,

t ′G(r) +
2Z

a0
tGs(r) = − Z

a0r2
ρl �=0 (6)

where evidently ρl �=0 = ρ − ρs . For the K shell alone, evidently ρl �=0 = 0, and we have the
analogue of equation (2) for the kinetic energy densities. For the K + L shell case [3, 4],
ρl �=0 ≡ ρp(r), where p denotes l = 1 as usual, and since this is proportional to r2 near the
nucleus, t ′G + (2Z/a0)tGs now tends to a constant at the origin r = 0.

We next appeal to the result [5] that

tGs(r) = 1

4

ρl �=0(r)

r2
+
ρ ′′
s (r)

8
(7)

and using equation (7) to remove ρl �=0/r
2 from equation (6) yields

t ′G(r) = −6Z

a0
tGs +

Z

2a0
ρ ′′
s (8)

which determines the total kinetic energy density tG(r) solely in terms of s-state information,
and is one of the key results of the present letter.

As a non-trivial example of the use of equation (8), let us consider the Heilmann–Lieb
(HL) density [6], which we shall denote by ρ∞(r), since these workers summed over the entire
bound-state spectrum εn = −Z2/2n2 from n = 1 to infinity. While HL gave two alternative
integral expressions for ρ∞(r),we have found for computational purposes that it is very useful
to write the s-state density, from the HL equation (12) giving dρ/dr (and therefore ρs from
equation (2)), in terms of the Whittaker functions M(a, b, z) [7] as

ρs∞(r) = 1

4πr2

∞∑
n=1

1

n

[
M

(
n,

1

2
,

2r

n

)]2

. (9)

We have then obtained analytically a power series expansion in r of ρs∞(r) in terms of the
Riemann zeta function ζ(m), and the low-order terms only are reproduced below:
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Figure 1. s-state density ρs(r) times r2 for an infinite number of bound states in a bare Coulomb
field. The Heilmann–Lieb exact result is shown (summed to 200 shells), and for comparison the
series expansion has been employed, the low-order terms of which are given in equation (10).
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We have plotted in figure 1 (for Z = 1) essentially the HL s-state density ρs∞(r) by summing
over n = 1 to 200 (actually in terms of Laguerre polynomials). This is compared with the
series expansion (10), taken however in our computations up to 20th order in r. As can be seen
in figure 1, this series starts to deviate from the exact HL density ρs∞(r) around r = 2.2 a.u.
Also shown in figure 1 at the largest r-value plotted is the large-r asymptote of HL, namely
[6, 8] for Z = 1,

ρs∞(r) = 3

4

√
2

3π2
r−5/2 r → ∞ (11)

but one will approach this limit very slowly since the quantity r2ρs∞(r) plotted behaves as

r2ρs∞(r) = 3

4

√
2

3π2
r−1/2 r → ∞. (12)

Relation (4) has proved central to this letter and therefore we shall now give a full proof
below in which we appeal to the study of March and Santamaria [9] on this bare Coulomb
model. These authors used the kinetic energy density t (r) defined from the wavefunction
form (ψ∇2ψ) and considered first the nth closed shell (later we shall again sum over shells).
Denoting kinetic and particle densities by tn and ρn for this shell, it was proved in [9] that (see
also [10])

tn

ρn
= tns

ρns
. (13)

But evidently

tns = − 1
2ψn00∇2ψn00 (14)
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Figure 2. Derivative t ′G(r) of kinetic energy density, times r2, plotted for the case Z = 1 for a
bare Coulomb field. Results, calculated from equation (8) and the Heilmann–Lieb expression for
ρs(r), are compared for 25 and 50 closed shells.
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Figure 3. Total kinetic energy density tG(r) for 25 closed shells, constructed solely from s-state
information.

and using the Schrödinger equation for the (normalized) s-state wavefunction ψn00 of the nth
closed shell one finds, with ρns = ψ2

n00,

tns

ρns
= (εn − V (r)) εn = − Z2

2n2
V (r) = −Z

r
. (15)

Hence, one has the result that for the nth closed shell

tn(r) = [εn − V (r)]ρn(r). (16)

But the spatial generalization (2) of Kato’s theorem is known to apply shell by shell, and hence
by differentiation of equation (16) and use of this theorem one finds

t ′n(r) = −2Zεnρns(r)− [Vρn(r)]′. (17)
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Using equation (15) for εnρns one readily reaches the result, after summing over an arbitrary
number of closed shells, that

t ′(r) + 2Zts + V ′ρ = 0. (18)

But t and tG are well known to be related by

tG(r) = t (r) +
∇2ρ

4
(19)

and using the result in equation (18) one is led back to equation (4) after some quite
straightforward manipulation. This therefore completes the proof of equation (4), which
has been illustrated already by the calculation of t ′G (or tG), actually from the derived
equation (8) using equations (2) and (4), shown in figures 2 and 3.

In summary, some general analytical results have been presented for an arbitrary number
of closed shells in a bare Coulomb field, the most notable of which are embodied in
equations (4) and (8). In particular, equation (8) shows that the total kinetic energy density
tG(r) can be obtained from tGs and ρs (plus Z), i.e. from s-state information. Figures 1 to 3
illustrate the analysis presented here in the Heilmann–Lieb limit [6].
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